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Abstract 
The low frequency limit of waves propagating through a layered medium is investigated, and we find 
that the typical ratio of wavelength to layer thickness )/( dλ  at which the plane layered stack can be 
regarded as a homogeneous medium is strongly dependent on the strength of reflection coefficients 
and can not be characterized by a single value. 
 
Introduction 
The effect of multiple scattering in finely layered sediments is of importance for stratigraphic 
interpretation, matching of well log-data with seismic data and seismic modelling. This problem was 
first studied in the now classical paper by O'Doherty and Anstey (1971).  In the limit of infinite 
wavelength finely layered media can be regarded as an effective homogeneous medium (Backus, 
1962). Folstad and Schoenberg (1992) investigated models with different layer thickness and 
concluded that fine layering of the order of 1/10 of the smallest wavelength could effectively be 
regarded as a homogeneous medium.  In this paper we show that the transition to an effective medium 
depends not only on the ratio between wavelength and layer thickness, but also on the strength of the 
reflection coefficients. 
 
Finely layered medium with variable contrast 
To examine the influence of the layer thickness we have constructed a set of models where the first 
four are shown in figure 1. Model M1 is a stack of fine layers taken from a real well log. Layer no i is 
characterized by layer thickness id , velocity iV  and density iρ . Models M2,M4 and M8 are 

constructed from model M1 by dividing the layer spacing by a factor of 2,4 and 8, respectively. The 
resulting model is then duplicated 2,4 or 8 times preserving the total depth interval of 500m. Such 
repeated lithological sequences can be found in, for example, turbidite systems. In the numerical 
examples below we will also study models duplicated 16 and 32 times. 
Each of the models described above is further modified by scaling the reflection coefficients rr γλ =  
with a factor equal to .γ A new density profile is then computed but velocities are not changed. The 
scaling of the reflection coefficients allow us to study models with the same velocity profile but 
different contrast between layers. 

The weak contrast approximation 

The transmission  
)(N

Dt and reflection D
Nr )(  responses of a normal-incident plane wave from a stack of 

N layers can be computed approximately by including only second order multiples (Shapiro and 
Treitel ,1997), also referred to as the weak contrast approximation 
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Here the phases are given by i i i id Vϑ ωτ ω= = , and ω  is the frequency. The reflection coefficient 
correlation function is given by 
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Φ = +∑ ∑  The velocity in the zero-frequency limit is obtained as 
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where TA NV Dω ϑ=  is the time-average velocity. D is here the total depth of the stack. Note that for a 

real medium the zero-frequency limit and the Backus limit (Backus, 1962) are different.  

O’Doherty-Anstey (ODA) approximation 
The weak-contrast approximation means that we neglect the higher order terms in Φ . The O’Doherty-

Anstey approximation (1 eΦ+Φ ≈ ) reconstructs to a certain degree the neglected terms. The 
transmission amplitude reduces to the well-known O’Doherty-Anstey formula: 
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Numerical results 
For the numerical examples we use 500m of the real log sampled at 0.125m (M1) and the duplicated 
models Mn, n=2,4,…32. (Figure 1). The comparison between the Backus limit, zero-frequency limit 
and zero-frequency limit in ODA approximation versus contrast is shown in Figure 2 for model M1. 
One can see that all these limits are different, but for the relatively weak contrast the zero-frequency 
limit in ODA gives a good fit with the zero-frequency one. The comparison between the exact, weak-
contrast and ODA velocities and transmission amplitudes is given in Figure 3. The ODA 
approximation reconstructs both amplitudes and velocities, and this effect is more pronounced in the 
low frequency domain. In Figure 4 the transmission and reflection responses are shown for the wavelet 
with maximum spectrum on 15 Hz for models Mn, n=1,2,…,32 and the contrast factor 1,4γ = .  

The typical layer thickness of model M32 is 1/32 of the typical layer thickness in model M1 and from 
the comparison of the transmission and reflection responses we can conclude that there is a transition 
zone between the effective medium and time-average medium, and the typical layer thickness (d) this 
occurs for depends on the contrast in reflectivity. The effective medium parameters also depend on the 
contrast (the reflections from the bottom of effective medium have different polarity for 1γ =  and 

4γ = ). Denoting the dominant wavelength by λ  in figure 5 the dλ  ratios are plotted against the 
contrast in reflectivity. With increase of reflectivity contrast the transition zone becomes larger. It 
means that the transition between the effective medium and time-average medium is defined not by a 
given constant dλ  ratio but also depends on the contrast in reflectivity. 

Conclusions 

The ODA approximation reconstructs not only amplitudes, but also the dispersion equation. There is a 
transition zone between the effective medium and time-average medium, and transition frequencies 
are reflectivity dependent. The effective medium velocity is also reflectivity dependent, the larger 
reflectivity the smaller velocity. 
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Figure 2. Time-average velocity, 
Backus limit, zero-frequency limit and 
zero-frequency limit in ODA 
approximation versus reflectivity 
computed for model M1. 

Figure 1. Reflection coefficient series 
for models M1,M2,M4 and M8. 

Figure 3. Dispersion equation and transmission 
amplitudes with weak-contrast and O’Doherty-Anstey 
approximation for model M1 with 2γ = . 
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Figure 4. Transmission (to the top) and reflection (to the bottom) responses for 
1γ =  (to the left) and 4γ =  (to the right). 

Figure 5. dλ  ratio versus reflectivity 
contrast. 
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